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Abstract The objectives of this study were to implement

a Bayesian framework for mixed models analysis in crop

species breeding and to exploit alternatives for informative

prior elicitation. Bayesian inference for genetic evaluation

in annual crop breeding was illustrated with the first two

half-sib selection cycles in a popcorn population. The

Bayesian framework was based on the Just Another Gibbs

Sampler software and the R2jags package. For the first

cycle, a non-informative prior for the inverse of the

variance components and an informative prior based on

meta-analysis were used. For the second cycle, a non-

informative prior and an informative prior defined as the

posterior from the non-informative and informative anal-

yses of the first cycle were used. Regarding the first cycle,

the use of an informative prior from the meta-analysis

provided clearly distinct results relative to the analysis with

a non-informative prior only for the grain yield. Regarding

the second cycle, the results for the expansion volume

and grain yield showed differences among the three anal-

yses. The differences between the non-informative and

informative prior analyses were restricted to variance

components and heritability. The correlations between the

predicted breeding values from these analyses were almost

perfect.

Introduction

The best linear unbiased prediction (BLUP) (Henderson

1974) has been widely used for genetic evaluation in animal

and forestry breeding programs. A common method for

estimating variance components has been the restricted

maximum likelihood (REML) (Patterson and Thompson

1971). Bayesian prediction of genetic variances and

breeding values has also been largely employed (Sorensen

2009; Blasco 2001). In fact, Bayesian inference has addi-

tional relevant applications in genetics and breeding, such

as the prediction of breeding values using genome-wide

dense marker maps (Meuwissen et al. 2001), quantitative

trait loci mapping (Bink et al. 2008), analysis of population

structure (Pritchard et al. 2000), association mapping

(Marttinen and Corander 2010), and inferring levels of gene

expression and regulation (Beaumont and Rannala 2004).

Only recently have annual crop breeders recognized the

advantages of genetic evaluation by BLUP or Bayesian

analysis, such as variance components estimation based on a

superior method for unbalanced data, the use of pedigree

information and historical data to increase the prediction

accuracy, and the possibility of the inclusion of prior infor-

mation about parameters to be estimated (Piepho et al. 2008;

Bauer et al. 2009; Viana et al. 2012a). Bauer et al. (2006),

Flachenecker et al. (2006), Oakey et al. (2007), Viana et al.

(2010a, 2011a), and others, have demonstrated the efficacy

of BLUP in recurrent intra- and interpopulation breeding

programs and in the development of pure/inbred lines.

Studies on Bayesian inference of mixed models in

annual crop breeding are scarce. Mathew et al. (2012)
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observed that the Bayesian estimates of variance compo-

nents were more accurate compared to the REML estimates

for simulated data and as accurate as the REML estimates

for barley field data. Furthermore, the accuracies of the

Bayesian and BLUP predictions were equal. Bauer et al.

(2009) analyzed field and simulated data from spring bar-

ley lines, taking into consideration genotype-by-environ-

ment interaction effects and pedigree information. In

general, Bayesian inference and BLUP resulted in similar

breeding value predictions when the heritability of the trait

was high. However, the Bayesian approach was superior

for traits with low heritability.

Fortunately, all Bayesian analyses for the genetic eval-

uation in animal and forestry breeding are suitable for

annual crop breeding. Waldmann and Ericsson (2006) fit-

ted a multi-trait individual model for partial diallel analy-

ses of field and simulated data from Scots pine progeny.

Differences were observed between REML and Gibbs

sampling estimates in both data sets. The authors con-

cluded that REML estimates are accurate and the mode of

posterior distributions from the Gibbs sampling can be

overestimated depending on the heritability. Using the

same data sets, Waldmann et al. (2008) fitted an additive–

dominance model based on transformations of the

relationship matrices. With high dominance, the additive–

dominance model had the best fit. With low dominance, an

informative prior was necessary to avoid overestimation of

the dominance variance. The REML and Gibbs sampling

estimates agreed well and the Bayesian and BLUP pre-

dictions showed similar accuracies.

The Bayesian approach has some advantages compared

to the BLUP analysis, such as flexibility in choosing the

distributions for sample data and unknown parameters and

the possibility of incorporating prior knowledge about

parameters of the model (Sorensen 2009; Blasco 2001).

Although this latter advantage is widely mentioned in the

literature as a potentially attractive feature of Bayesian

inference (Beaumont and Rannala 2004), it has been un-

derexplored in practice in animal and plant breeding, per-

haps because of a lack of situations in which this prior

knowledge can be naturally incorporated. In our opinion,

the incorporation of background information represents a

special feature of Bayesian analysis in crop species breed-

ing because the concept of selection cycles characterizes a

natural mechanism for informative prior elicitation. This is

because the posterior distribution for the parameters of

interest from a given cycle, such as variance components,

can be used as a prior distribution in the analysis of the next

cycle, thus forming a knowledge update system.

In terms of the computational features of Bayesian infer-

ence of mixed models, statistical tools using Markov chain

Monte Carlo (MCMC) algorithms, such as the Gibbs sampler,

have been widely used, especially in animal breeding. Among

these tools, featured software including MTGSAM (Van

Tassell and Van Vleck 1996) and gibbsf90 (Misztal et al.

2002) can be used only for additive model with one vector of

breeding values, such as the individual and half-sib family

models. Furthermore, these softwares do not have flexibility

in choosing the distributions for data and parameters, which

prevents the use of non-normal data distributions and infor-

mative prior distributions. The R (R Development Core Team

2012) package MCMCglmm (Hadfield 2010), whose theo-

retical background was detailed by Hadfield and Nakagawa

(Hadfield and Nakagaw 2010), is a more flexible tool. This

package offers several options for data distribution, including

uni- and multivariate discrete distributions, and allows

changing hyperparameters of different classes of prior dis-

tributions. Additionally, it permits the inclusion of the addi-

tive relationship matrix by using the pedigree statement.

However, similar to MTGSAM and gibbsf90, MCMCglmm is

unable to address models that include dominance or more

than one genetic random effect as the gametic model.

One attractive solution to this problem is using the

software WinBUGS (Lunn et al. 2009), which is a general

Bayesian programming environment. It is highly flexible in

relation to the previously mentioned models and distribu-

tions, and only requires specifications of the data listing,

likelihood function, and prior distributions. Damgaard

(2007), Waldmann (2009), and Hallander et al. (2010)

implemented mixed models analysis in this software on

animal and forestry breeding data. The method proposed by

Hallander et al. (2010) is a very flexible Bayesian analysis

that allows inferences in linear mixed models with a large

number of genetic parameters. Additionally, their approach

reduces the computational demand of large pedigrees.

Although the flexibility of WinBUGS is indisputable, it

does not allow direct handling of incidence and relation-

ship matrices. These limitations make it necessary to use

indirect methods based on algebraic notations, making the

codes complex and unfavorable for many users. One

interesting alternative is the Just Another Gibbs Sampler

(JAGS) software (Plummer 2012), which has the same

flexibility and facilities of WinBUGS but has the advantage

of allowing matrix language programming.

The objectives of the present study were to implement a

Bayesian framework for mixed models analysis in crop

species breeding and to exploit alternatives for informative

prior elicitation.

Materials and methods

Experimental data

The Bayesian inference in annual crop breeding was

illustrated with the first two half-sib selection cycles of the
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Viçosa popcorn population. The two trials composed of

196 progeny were designed as a 14 9 14 simple lattice and

performed in the experimental station of the Federal Uni-

versity of Viçosa at Coimbra, Minas Gerais state, Brazil, in

the 1999/2000 and 2001/2002 growing seasons. Each plot

corresponded to a 5 m row with 25 plants (ideal stand). The

traits analyzed were the expansion volume (EV) and the

grain yield.

Model and Bayesian inference

The mixed model fitted (half-sib family model) was

y ¼ Xbþ Z1u1 þ Z2u2 þ e ð1Þ

where y is the vector of phenotypic values; X and b are,

respectively, the incidence matrix and the correspondent

vector of fixed effects (population mean and replication

effects); Z1 and Z2 are the incidence matrices of the random

effects; u1 is the vector of half of the additive genetic

values of the common parents; u2 is the vector of block

within replication effects; and e is the residuals vector.

Assuming ejr2
e �Nð0; Ir2

eÞ, the distribution of the

observed data (likelihood function) is

yjb; u1; u2; r
2
u1
; r2

u2
; r2

e �NðXbþ Z1u1 þ Z2u2; Ir
2
eÞ ð1:1Þ

where r2
u1
¼ ð1=4Þr2

A and r2
A is the additive genetic

variance.

The prior distributions for the location parameters (fixed

and random effects) were given by

bjlb; Ibr
2
b�N(lb; Ibr

2
bÞ ð1:2Þ

u1jAr2
u1
�N(0;Ar2

u1
Þ ð1:3Þ

u2jIbr
2
u2
�Nð0; Ibr

2
u2
Þ ð1:4Þ

where lb and r2
b are the known parameters

(hyperparameters) of a multivariate normal distribution

with the covariance matrix given by Ibr2
b; A = {2rij} is the

additive relationship matrix and rij is the coefficient of

coancestry between the common parents of progeny i and j.

The prior distributions for the variance components r2
u1

,

r2
u2

, and r2
e were the following scaled inverted Chi-squared

distributions,

r2
u1
jmu1; Su1� mu1Su1v

�2
mu1

ð1:5Þ

r2
u2
jmu2; Su2� mu2Su2v

�2
mu2

ð1:6Þ

r2
e jme; Se� meSev

�2
me

ð1:7Þ

where mu1, Su1, mu2, Su2, me, and Se are free parameters,

called hyperparameters.

Under Bayes’ Theorem, the joint posterior distribution

of all unknown parameters (b; u1; u2; r2
u1
; r2

u2
and r2

e) is

proportional to the product of the likelihood function

(Eq. 1.1) and the prior distributions (Eqs. 1.2–1.7). Thus,

the general formulation of this theorem is

P b; u1; u2; r
2
u1
; r2

u2
; r2

e jy
� �

/ P yjb; u1; u2; r
2
u1
;r2

u2
; r2

e

� �

� P bjlb;r
2
b

� �
� P u1jAr2

u1

� �

� P r2
u1
jmu1; Su1

� �
� P u2jIbr

2
u2

� �
� P r2

u2
jmu2; Su2

� �

� P r2
e jme; Se

� �

Using the respective probability density of these prior

distributions, the formula of the joint posterior distribution

can be obtained as

P b; u1; u2; r
2
u1
; r2

u2
; r2

e jy
� �

/ r2
e

� ��N=2
exp

� � y� Xbþ Z1u1 þ Z2u2ð Þ½ �t y� Xbþ Z1u1 þ Z2u2ð Þ½ �
2r2

e

� �

� r2
b

� � �nb=2ð Þ
exp �

b�lb

� �t
b�lb

� �

2r2
b

" #

� r2
u1

� � �nu1=2ð Þ
exp � ut

1Au1

2r2
u1

 !

� r2
u1

� �� mu1
2
þ1ð Þ

exp � mu1Su1

2r2
u1

 !

� r2
u2

� � �nu2=2ð Þ
exp � ut

2u2

2r2
u2

 !

� r2
u2

� �� mu2
2
þ1ð Þ

exp � mu2Su2

2r2
u2

 !
� r2

e

� �� N
2
þ1ð Þ

exp � meSe

2r2
e

� 	

ð2Þ

The statistical inference on the parameters from Eq. 2 is

based on the posterior marginal distributions, P(:jyÞ, for

each of the parameters. The necessary integrals to obtain

these distributions are intractable, implying the use of

numerical evaluation by specialized algorithms as those

from the MCMC class. In summary, these algorithms

generate random samples from the posterior marginal

distributions indirectly from the full conditional posterior

distributions (f.c.p.d.), which are the posterior distribution

for a given parameter conditional on the data and the

remaining parameters. In general terms, defining

h¼ h1; h2; . . .; hp


 �
as the full set of p parameters, the

f.c.p.d. for a particular parameter hk is denoted by
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P ðhkjh1; . . . ; hk�1; hkþ1; . . .; hp; yÞ. Once these f.c.p.d. are

characterized as known families of probability

distributions, therefore presenting closed forms, the Gibbs

sampler algorithm can be used.

The Gibbs sampler begins with h(0), the starting values

for the considered parameters, where h(t) represents the

values generated at the tth iteration of this algorithm, which

are obtained by collecting the draws from each of the

f.c.p.d., such that hðtÞk � hkjhðtÞ1 ; . . .; hðtÞk�1; h
ðt�1Þ
kþ1 ; . . .; hðt�1Þ

p ; y

and hðtÞ¼ hðtÞ1 ; h
ðtÞ
2 ; . . .; hðtÞp

h i
. Thus, defining T as the total

number of iterations, if T !1, the Markov chain property

ensures that after discarding some initial iterations (burn-in

period), the values generated for a given parameter, hk, are

characterized as samples from its marginal posterior dis-

tribution, PðhkjyÞ.

Computational features

Obtaining the f.c.p.d. is a key point in Bayesian inference.

Assuming normal distributions for the data and location

parameters as well as scaled inverted Chi-squared distri-

butions for the variance components, Garcı́a-Cortés and

Sorensen (1996) and Sorensen and Gianola (2002)

employed a detailed mathematical handling of Eq. 2 to

derive general classes of f.c.p.d. for some mixed models

with one and two random effects. These distributions have

been used in animal breeding software such as MTGSAM

and gibbsf90. Thus, using these special model structures,

obtaining the f.c.p.d. is required to apply MCMC algo-

rithms, but obtaining the f.c.p.d. can prove to be an arduous

task for many animal and plant breeders. To address this

problem, flexible and easy software has been developed.

The JAGS software (Plummer 2012) has the same

flexibility and facilities of WinBUGS but has the advantage

of working under a full matrix approach, allowing direct

handling of incidence and relationship matrices. Thus, the

distributions for the data and unknown parameters can be

specified in accordance with the theory, as shown in detail

in the appendix. Note the alternative code defining the

Student-t distribution for the data, a reparameterization of

the genetic and error variances in terms of heritability and

phenotypic variance, and a uniform prior distribution for

the standard deviation of variance components. Another

interesting feature of JAGS is its special link to the R

software through the R2jags package (Su and Yajima

2012). This package has featured capability for data read-

ing (phenotypic values, incidence and relationship matri-

ces, and initial values) through the read.table function.

This function avoids working with the list statement of

WinBUGS, which is impracticable with larger data sets.

Another advantage of R2jags is the possibility of using R

packages directly for MCMC convergence diagnostics and

for obtaining highest probability density (HPD) intervals of

the posterior distributions, such as boa (Smith 2007) and

coda (Plummer et al. 2012). A detailed code for R2jags

using the fitted model is shown in the appendix.

In relation to the prior distributions for the variance

components (r2
u1
; r2

u2 and r2
e) in the appendix, note that a

reparameterization of the original scaled inverted Chi-

squared (Scale v�2) distribution (Eqs. 1.5–1.7) is being

used because the JAGS package does not work directly

with this distribution. This distribution is a special case of

the inverse gamma distribution (inv Gamma). Thus,

assuming that r2� Scalev�2ðm; S), where S = mr2* and

r2* is the prior most likely value to r2, one equivalent

distribution is r2� inv Gammaðm=2; S/2) (Sorensen and

Gianola 2002, p. 85), which allows using s ¼ 1=r2

�Gammaðm=2; S/2).

Informative prior distributions

To perform analyses involving different prior distributions,

for the first cycle non-informative priors were initially used

for the inverse of the variance components, defined by

s ¼ 1=r2�Gamma(0:001; 0:001Þ. As the same population

and phenotypes were analyzed by ANOVA/BLUE (best

linear unbiased estimation) or REML/BLUP (Viana et al.

2010b, 2011b), an informative prior based on meta-analysis

was used as well. In order to validate the inclusion of these

two studies in the meta-analysis, a homogeneity test based

on the Q statistics (Hedges and Olkin 1985) was employed

using the epi.smd (fixed-effect meta-analysis of continuous

outcomes) function of the R software. This test was applied

independently to each one of the four sets of values

(genetic and residual variances for EV and grain yield), and

the p values ranged from 0.39 to 0.82, indicating homo-

geneity of these independent studies and, consequently, the

adequacy to combine the results from them into a single

measure.

For this, the inverse of the average value of a given

variance component (�s ¼ 1=�r2) and its respective variance

(S2
�s) were calculated from a set of values reported in these

studies and equalized to the expectation and variance of a

gamma (a, b) distribution: �s ¼ a
b and S2

�s ¼ a
b2. Thus, it was

possible to define a ¼ �s
S2

�s
and b ¼ �s2

S2
�s
, resulting in

s ¼ 1=r2�Gammaða; bÞ, which is an informative prior,

such that its expectation and variance are coincident with

the mean and variance, respectively, of the data set con-

taining the reported values in the referenced papers. A

similar procedure was used by Pérez et al. (2010) to choose

1752 Theor Appl Genet (2013) 126:1749–1761

123



hyperparameters for prior distributions in a Bayesian

regression model applied to genomic selection.

This same system of equality was used to exploit the

results of the first cycle as prior information for the second

cycle. For this, the mean and variance of the marginal

posterior distributions for the inverse of the variance

components obtained from the analysis with or without an

informative prior were equalized to the expectation and

variance of a gamma distribution, from which the values of

a and b were calculated. Thus, the expectation and vari-

ance of these gamma distributions are coincident with the

mean and variance, respectively, of the posterior distribu-

tions from the first cycle, characterizing an incorporation of

prior knowledge coming from the previous cycle. It is

worth noting that the prior information was only exploited

for the genetic and error variances.

Bayesian analysis

Based on previous analyses of some MCMC chains, we

decided to use one chain of 70,000 iterations per trait. We

set the burn-in to 20,000 iterations and thinned every fifth

iteration, resulting in a total sample of 10,000 iterations for

both traits. In each chain, we analyzed the posterior mean,

standard deviation, 95 % HPD interval, and convergence

criterion statistics (Geweke 1992; Raftery and Lewis 1992)

for the additive, blocks within replication and error vari-

ances, heritability, and breeding values. The heritability at

the half-sib family level is ð1=4Þr2
A= ðr2=rÞ þ ð1=4Þr2

A

� �
,

where r2 is the error variance and r is the number of

replications.

Results

For all parameters, the absolute values of Geweke’s Z statis-

tics were below 1.96 and the dependence factor of Raftery

and Lewis were below 5.0, indicating that convergence was

reached (Tables 1, 2). Regarding the first cycle, the analyses

of the EV showed that the use of an informative prior from a

meta-analysis did not provided clearly distinct results relative

to the analysis with a non-informative prior (Table 1). The

estimates and precision of the additive genetic variance and

heritability were equivalent because the values of the stan-

dard deviation and the 95 % HPD intervals were similar.

However, for the grain yield, both analyses provided distinct

results. For the additive genetic variance and heritability, the

analysis with informative prior provided estimates 1.7 times

higher than those found when the non-informative prior was

used. There was also an increase in precision because the

coefficient of variation for the additive genetic variance and

heritability decreased from 58.9 to 33.1 % and from 52.3 to

26.4 %, respectively. The differences between the two

analyses are highlighted by the posterior densities of the

genetic and non-genetic parameters (Fig. 1). For the EV,

there was a tendency toward overlap between the densities,

indicating little influence from informative prior on posterior

distributions. However, for the grain yield, differences are

evident between the posterior densities, mainly because the

informative prior resulted in a more narrow and symmetric

distribution, confirming the increase in precision.

For the second cycle, the results for both traits showed

the effectiveness of the prior information in increasing the

precision of the genetic parameters (Table 2). For the EV,

Fig. 1 Posterior distributions of genetic parameters and error vari-

ance of the first cycle. a Heritability for EV; b additive genetic

variance for EV; c error variance for EV; d heritability for grain yield;

e additive genetic variance for grain yield; f error variance for grain

yield. Continuous line indicates non-informative prior, dashed line

indicates informative prior (meta-analysis)
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the coefficient of variation of the additive genetic variance

decreased from 51.1 %, using non-informative prior, to

35.8 and 46.7 % using informative prior from posterior of

the first cycle. For the grain yield, the coefficient of vari-

ation of the additive genetic variance decreased from

42.5 % to 32.3 and 18.6 %. The precision of the herita-

bility also increased for both traits. With one exception, the

increases in precision were higher with the posterior from

cycle 1 with meta-analysis. The gain in precision from the

use of informative prior was accompanied by a reduction in

the additive genetic variance and heritability estimates,

with one exception. For the grain yield, compared with the

analysis using a non-informative prior, there was a relevant

decrease (42.0 %) in the estimate of the additive genetic

variance with an informative prior and posterior from cycle

1 and a significant increase (59.6 %) with an informative

prior and posterior from cycle 1 with meta-analysis. It is

clear that the narrowest densities for posterior distributions

were obtained from informative prior distributions (Fig. 2).

Furthermore, the displacements of the densities are more

visible in the second cycle than the first cycle, highlighting

the larger differences between additive genetic variance

and heritability estimates observed in the second cycle.

For the EV, the breeding values obtained from the

analyses with an informative prior showed higher precision

(Tables 1, 2). Higher precision was also observed for the

grain yield but only in the analysis of the second cycle with

an informative prior as the posterior from cycle 1. The

differences between the analyses with informative and non-

informative priors were restricted to variance components

and heritability. For the EV and grain yield, the correla-

tions between the breeding values obtained by Bayesian

(mean of the estimated posterior distribution) and BLUP

analysis were almost perfect (0.99), yielding a coincidence

between the 20 superior parents of at least 90 %.

Discussion

We must not try to establish that Bayesian inference is the

breeder’s best choice for genetic evaluation in crop species

improvement. However, we should try to demonstrate that

with an adequate statistical tool, it is possible, although not

necessarily easy, to use Bayesian inference for genetic

evaluation in crop species breeding, as has been done using

REML/BLUP (Bauer et al. 2006; Flachenecker et al. 2006;

Oakey et al. 2007; Viana et al. 2010a, 2011a), using the

ASReml software (Gilmour et al. 2009) and the procedure

Mixed of the SAS software (Littell et al. 2006) [free of

charge software as WOMBAT (Meyer 2007) and

BLUPF90 (Misztal et al. 2002) has not been used in plant

breeding]. Many theoretical and applied studies have

compared ANOVA/BLUE (best linear unbiased estimation),T
a
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REML/BLUP and Bayesian inference for the estimation or

prediction of genetic parameters. In general, no single

statistical approach can be considered superior in all situ-

ations. As stated by Blasco (2001), both Bayesian and

frequentist schools of inference are well established, nei-

ther of them has, in general, operational difficulties, and

there is software available to analyze a large variety of

problems from both points of view. For this author, the

choice should be based on possible statistical approaches to

solve the problem, facility to solve the problem, and con-

fidence of the scientist to establish inferences, if the pos-

sible analyses are equally efficient.

There are four important advantages of the Bayesian

approach compared to the BLUP analysis. First, Bayesian

inference allows using informative priors about parameters

of the model (Beaumont and Rannala 2004). When the prior

distribution is informative, the credibility intervals are nar-

rower than the confidence intervals. When the parameters of

the mixed model are assigned non-informative distributions,

Bayesian inference and BLUP should be equivalent

(Sorensen and Gianola 2002). Second, uncertainties in the

parameters are fully acknowledged throughout the inference

process using Bayesian MCMC methods (location and scale

parameters are jointly inferred) (Sorensen 2009). In the

BLUP procedure, variance components are first estimated

and the obtained point estimates are then used as true values

to obtain breeding values, thus ignoring uncertainty in the

variance parameters. It should be emphasized, however, that

the quality of Bayesian inferences depends on the efficacy of

the MCMC method to generate good samples from the

posterior distributions (Sorensen 2009).

Third, credibility intervals are directly obtained from the

inferred posterior distributions without making any further

assumptions, whereas in the BLUP approach asymptotic

assumptions are made to derive the confidence intervals

(Blasco 2001). Finally, MCMC methods integrate over the

parameter space instead of trying to maximize the likeli-

hood (Sorensen 2009; Blasco 2001). The maximization of a

function can become problematic in some cases. For large

randomized trials, the likelihood function will most likely

be unimodal with a sharp peak meaning that maximization

will most likely succeed. However, for small pedigree

sizes, and/or if the model consists of multiple, correlated

random terms, the likelihood function could become

bimodal or very flat, making maximization problematic.

No convergence, however, is not restricted to the BLUP

approach. With MCMC methods, it is necessary to ensure

that the chain has reached its stationary state and run it for

sufficient iterations.

Mathew et al. (2012) showed that Bayesian inference is

superior to BLUP when the posterior distribution of a vari-

ance component is bimodal. Their adaptive MCMC algo-

rithm was able to detect different modes in the posterior

distribution. The estimates of variance components using

Gibbs sampling and REML were very similar in the studies

of Van Tassell and Van Vleck (1996) and Van Tassell et al.

(1995), especially for traits with high heritability. However,

the mean squared error tended to be smaller for the estima-

tors based on Gibbs sampling, especially for the low heri-

tability scenario. Mathew et al. (2012), Waldmann et al.

(2008), Schenkel et al. (2002), and Harville and Carriquiry

(1992) did not find relevant differences between the breeding

Fig. 2 Posterior distributions of genetic parameters and error vari-

ance of the second cycle. a Heritability for EV; b additive genetic

variance for EV; c error variance for EV; d heritability for grain yield;

e additive genetic variance for grain yield; f error variance for grain

yield. Continuous line indicates non-informative prior, dotted line

indicates informative prior (posterior from cycle 1), dashed line

indicates informative prior (posterior from cycle 1 with meta-

analysis)
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values predicted by BLUP or Bayesian approach. Schenkel

et al. (2002) also observed that the breeding values presented

the same bias and accuracy. Our results relative to the non-

informative analyses and the results of the REML/BLUP

analyses presented by Viana et al. (2011b) are equivalent for

some components of variance and heritability and for

breeding values. For both the EV and grain yield, the cor-

relations between breeding values predicted by Bayesian

inference and BLUP ranged from 0.89 to 0.99. However, the

standard error prediction was lower than the standard devi-

ation of the Bayesian prediction. The 95 % HPD intervals for

the additive genetic variances and breeding values were

narrower than the correspondent 95 % confidence intervals,

as observed by Waldmann and Ericsson (2006).

In recurrent intra- and interpopulation breeding pro-

grams and in the development of pure/inbred lines, the

prior information for a given selection cycle can be based

on meta-analysis or on the posterior distributions of the

parameters from the previous cycle. Waldmann et al.

(2008) showed that an informative prior was necessary to

avoid overestimation of the dominance variance. Wang

et al. (1993) showed that the parameter estimates were

more precise when using higher levels of prior information.

However, in a study by Rodriguez et al. (1996) the results

of the analyses that assigned a greater weight to external

information were identical to those obtained with flat pri-

ors. For Van Tassell et al. (1995), the use of improper

priors, including flat priors, for variance components cre-

ated difficulty in the application of Gibbs sampling

approach because the use of these priors resulted in

improper posterior densities of the variance components.

These authors also noted that the effect of the prior dis-

tribution decreases as the heritability or the amount of

information increases.

Using the scale parameters of the prior distributions from

a meta-analysis or from the posterior distributions from the

previous cycle has some limitations. Actually, given a trait,

using estimates of additive and error variances from distinct

populations and experiments can provide biased estimates

of the mean and variance of the scale parameters because all

genetic parameters are associated with a base population

and its estimates were obtained under different experi-

mental conditions. We used ANOVA and REML estimates

from the same population, which were obtained in distinct

trials with non-inbred and inbred progeny. However, this

option reduces the available data for the meta-analysis. An

interesting alternative would be a reparameterization for

heritability and phenotypic variance (Garcı́a-Cortés et al.

2001). Although heritability is also a population parameters

under a given experimental condition, heritability values

are more consistent. The breeders know that for some traits

the heritability is regularly low, but for other traits the

values are consistently high. Furthermore, selection can

have a more relevant effect on additive genetic variance

than it can on heritability. Fortunately, JAGS allows mod-

eling heritability and phenotypic variance in place of the

additive and error variances (see the appendix). However,

phenotypic variance is also required, which also depends on

genetic and non-genetic components, that is, population and

experimental conditions.

A limitation of prior information from the posterior

distribution of a previous cycle is that the estimate of the

additive genetic variance tends to be more biased as the

selection process is more effective. Assuming an infinites-

imal model, the expected reduction in the additive genetic

variance would be of 10 % with half-sib selection (Bulmer,

1980). Additional changes can be attributable to within-

family selection and linkage disequilibrium. Assuming that

the intensity of within-family selection is 10 % and that the

average phenotypic variance within a family is twice the

error variance, the additional reduction in the additive

genetic variance would be 9 %. Assuming an additive

model and that selection changes the phenotypic variance

by a constant proportion of the genotypic variance, Bulmer

(1980) demonstrated that the linkage disequilibrium can

reduce the genotypic variance by up to 80 %. Hallander and

Waldmann (2007) showed that the number of loci and non-

additive genetic effects greatly influenced the change in

additive genetic variance in populations that were subjected

to selection. Assuming the same magnitude for dominance

and epistatic variance, they observed that additive-by-

additive epistasis induced a greater increase in additive

genetic variance than dominance variance. Furthermore,

they also observed an influence of the initial gene fre-

quencies and the number of individuals under selection. In

general, it is difficult to assess the change in the additive

genetic variance in a population undergoing directional

truncation selection because the additive genetic variance is

influenced by many complex factors as genetic control of

the trait (number of genes, magnitude, number and sign of

dominance and epistatic effects), linkage, gene frequencies

in the population, effective population size, and selection

efficacy. Assuming only additive effects, the additive

genetic variance will decrease under selection (Hallander

and Waldmann 2007).

According to Waldmann (2009), one challenge that

limits the use of Bayesian inference in quantitative genetics

is the lack of user-friendly software that researchers can

use without having extensive statistical knowledge.

Waldmann (2009) presented a ‘‘flexible and easy’’ way to

implement Bayesian analysis using the WinBUGS soft-

ware. However, this software is limited by the fact that it

does not allow direct matrix operations. Thus, the ability to

directly program models involving matrix operations is the

greatest advantage of the JAGS software. Furthermore,

there is the advantage of working in the R interface through

Theor Appl Genet (2013) 126:1749–1761 1757
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the R2Jags package, which has a simple and easily im-

plementable routine. The JAGS software also allows for all

chains of the Gibbs sampler and its iterations to be saved.

This feature allows for the use of such iterations in con-

vergence analysis, which is easy to perform and interpret

using the R package boa.

With respect to computational speed, general-purpose

software such as JAGS and WinBUGS show inferior per-

formance in relation to specific software for animal breed-

ing, such as gibbsf90. However, this is the price paid for

high flexibility. For our data set, the average processing

time using an Intel(R) i7-2600 (3.4 GHz) processor

with 4 GB of RAM was 1 h and 43 min, corresponding

to approximately 0.08 s for each MCMC iteration.

Although this performance can be considered plausible,

improvements can be obtained using the conditional

decompositions proposed by Hallander et al. (2010), but the

algebraic notation originally implemented by the authors in

WinBUGS must be translated to matrix notation in JAGS.

Lastly, based on the presented code, it is straightforward

to fit the individual model in non inbred and inbred pop-

ulations (Viana et al. 2010a, 2012b), the full-sib family

model, the gametic model and the inbred family model

(Viana et al. 2010a, 2012a), as well as the models for

testcross (Viana et al. 2011a) and diallel analyses (Viana

et al. 2011c). The adequate models for interpopulation half-

and full-sib progeny include one [general combining ability

(gca) effects] and three (gca effects of populations A and B

and specific combining ability effects) random genetic

vectors (Viana et al. 2013), respectively.
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Appendix

(1) Code for JAGS

model

f
#likelihoodfunction

Y|{z}�dmnorm(mu[1:N,1],I[1:N,1:N]*tau eÞ

yjb;u1; u2;r
2
u1
;r2

u2
;r2

e�Nðl;Ir2
eÞEq:ð1:1Þ

# Y|{z}�dt(mu[1:N,1],I[1:N,1:N]*tau e;vÞ

yjb;u1; u2;r
2
u1
;r2

u2
;r2

e ;v�Student - tðl;Ir2
e ;v) (assuming the Student - t distribution for the data)

# Y|{z}�dmnorm(mu[1:N,1],I[1:N,1:N]*(1 - h2Þ� tau pÞ

yjb;u1; u2;r
2
u1
;r2

p; h
2�Nðl;I(1 - h2Þr2

pÞ (assuming a reparameterization in terms of h2 andr2
pÞ

mu[1:N,1]\- X[1:N,1:nbeta]% *% beta[1:nbeta,1] + Z1[1:N,1:nu1]% *% u1[1:nu1,1] + Z2[1:N,1:nu2]% *% u2[1:nu2,1]|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
l¼XbþZ1u1þZ2u2

#priordistributionforfixedeffects

beta[1:nbeta,1]|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl} � dmnorm (mean beta½1 : nbeta; 1�; Ibeta½1 : nbeta; 1 : nbeta� � 0:00001Þ

bjlb; Ibr
2
b�Nðlb; Ibr

2
bÞ Eq:ð1:2Þ

#priordistributionsforrandomeffects

u1[1:nu1,1]|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl} � dmnorm (mean u1[1:nu1,1], A[1:nu1,1:nu1] � tau u1Þ

u1jAr2
u1
�N(0, Ar2

u1
Þ Eq:ð1:3Þ

# u1[1:nu1,1]|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl} � dmnorm (mean u1½1 : nu1; 1�;A½1 : nu1; 1 : nu1� � h2 � tau pÞ

u1jAr2
u1
�N(0, Ah2r2

pÞ (assuming a reparametrization in terms of h2 and r2
pÞ

u2[1:nu2,1]|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl} � dmnorm (mean u2½1 : nu2; 1�; Ib½1 : nu2; 1 : nu2� � tau u2Þ

u2jIbr
2
u2
�N(0, Ibr

2
u2
Þ Eq:ð1:4Þ
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#priordistributionsfortheinverseofvariancecomponents

tau|{z} u1�dgamma(vu1/2, Su1/2)

r2
u1jmu1;Su1�mu1Su1v

�2
mu1

Eq:ð1:5Þ

tau|{z} u2�dgamma(vu2/2, Su2/2)

r2
u2jmu2;Su2�mu2Su2v

�2
mu2

Eq:ð1:6Þ

tau|{z} e�dgamma(ve/2, Se/2)

r2
e jme;Se�meSev

�2
me

Eq:ð1:7Þ

# sd p�dunif (a, b)

#tau|ffl{zffl} p\�sd p�sd p

rpja,b�U[a,b] (assuming a uniform prior for the phenotypic

standard deviation)

#|{z} h2� dbeta(c,d)

h2jc,d�Beta[c,d] (assuming a Beta prior for h2Þ
#|{z} v�dunif(e,f)

vje,f �U[e,f] (assuming a uniform prior for degrees of

freedom when using a Student - t for the data)

#definitionofvariancecomponents

sigma2 e\�1=tau e

sigma2 u1\�1=tau u1

sigma2 u2\�1=tau u2

sigma2 a\�4�sigma2 u1

h2\�sigma2 u1=(sigma2 u1þsigma2 e=2Þ
#assumingareparametrizationintermsofh2 andr2

p

#sigma2 p\�1=tau p

#sigma2 u1\� sigma2 p�h2

g

where Y is the phenotypic values vector; X, Z1, and Z2 are,

respectively, incidence matrices for b, u1, and u2; N, nbeta,

nu1, and nu2 are, respectively, the numbers of observa-

tions, of fixed effects, of families and of blocks; mean_-

beta, mean_u1, and mean_u2 are, respectively, the mean

vectors of prior distributions for b, u1, and u2; I, Ibeta, A,

Ib are, respectively, matrices related with covariance of

prior distributions for e, b, u1, and u2; and m. and S. are the

hyperparameters for the inverse of the variance

components.

(2) Code for R2jags

Y = as.matrix(read.table(‘‘Yp1.txt’’)) #reading phenotypic

observations (Y)

X = as.matrix(read.table(‘‘X.txt’’)) #reading incidence

matrix of b
Z1 = as.matrix(read.table(‘‘Z.txt’’)) #reading incidence

matrix of u1

Z2 = as.matrix(read.table(‘‘Jp.txt’’)) #reading incidence

matrix of u2

#specifying dimensions

N = nrow(Y) # number of observations in Y

nbeta = ncol(X) # number of fixed effects (b)

nu1 = ncol(Z1) # number of families (u1)

nu2 = ncol(Z2) # number of blocks (u2)

#mean vectors of prior distributions for location

parameters

mean_beta = matrix(100,nbeta,1) # lb in Eq. 1.2

mean_u1 = matrix(0,nu1,1) # 0 in Eq. 1.3

mean_u2 = matrix(0,nu2,1) # 0 in Eq. 1.4

#matrices related with covariance of prior distributions

for location parameters

I = diag(N) # I in Eq. 1.1

Ibeta = diag(nbeta) # Ibin Eq. 1.2

A = as.matrix(read.table(‘‘A.txt’’)) # A in Eq. 1.3

Ib = diag(nu2) # Ib in Eq. 1.4

#specifying hyperparameters for the inverse of variance

components (non-informative prior)

v1 = 0.001; v2 = 0.001; ve = 0.001; S1 = v1*1;

S2 = v2*1; Se = ve*1;

library(R2jags) #loading R2jags package

#listing JAGS input

jags.data = list(‘‘Y’’,‘‘X’’,‘‘Z1’’,‘‘Z2’’,‘‘N’’,‘‘nbeta’’,‘‘nu1’’,

‘‘nu2’’,‘‘mean_beta’’, ‘‘mean_u1’’,‘‘mean_u2’’, ‘‘Ibeta’’,

‘‘A’’, ‘‘Ib’’, ‘‘I’’,‘‘v1’’,‘‘v2’’,‘‘ve’’,‘‘S1’’,‘‘S2’’,‘‘Se’’)

#listing JAGS output

jags.params = c(‘‘beta’’,‘‘u1’’,‘‘u2’’,‘‘sigma2_u1’’,

‘‘sigma2_a’’,‘‘sigma2_u2’’, ‘‘sigma2_e’’,‘‘h2’’)

#listing initial values for MCMC simulation

jags.inits = function() {

list(‘‘beta’’ = structure(.Data = c(4500,100,300),.Dim =

c(nbeta, 1)), ‘‘u1’’ = structure(.Data = mean_u1,.Dim =

c(nu1, 1)),

‘‘u2’’ = structure(.Data = mean_u2,.Dim = c(nu2, 1)),

‘‘tau_u1’’ = c(0.0001), ‘‘tau_u2’’ = c(0.001), ‘‘tau_e’’ =

c(0.00001))}

#calling jags function of R2jags package

bayes = jags(data = jags.data, jags.params, inits = jags.

inits, n.chains = 1, n.iter = 70000, n.burnin = 20000,
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n.thin = 5, model.file = ’’bayes_model.txt’’) # ‘‘ba-

yes_model.txt’’ is txt file containing model specified in

Code for JAGS

#saving MCMC output

write.table(as.mcmc(bayes),

‘‘prod_noninf.txt’’,row.names = FALSE,quote = FALSE)
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